It Was Like That When | Got Here:
Steps Toward Modernizing A Legacy Codebase

@pmjones

mlaphp.com

http://mlaphp.com

REFACTORING

IMPROVING THE DESIGN
OF EXISTING CODF

Read [hese

ANMIVERBARY LOMIEDM MITH TOUN NEW EHARIESS

. //—/m '~////.)/-// //)/y //7///////” : _/r")//.}

PATTERNS OF
ENTERPRISE
APPLICATION
ARCHITECTURE

IONTY TEYRL 200 MO AYES)D

7
4

MARTIN FOWLER

Wit CONTRIBUTIONS BY
Davip RicCE,
MATTHEW FOEMMEL,
EpwarD HigATT,
ROBERT MEE, Axn
RANDY STAFFORD

MY THICA L
MAN-MONTH

FREDERICK P, DROOXE, o0,

About Me

» 8 years USAF Intelligence

» BASIC in 1983, PHP since 1999

* Jr. Developer, VP Engineering

* Aura project, Zend DB, Zend View
» ZCE Advisory Board

» PHP-FIG: PSR-1, PSR-2, PSR-4

» Action-Domain-Responder

Overview

 The code you are suffering with
* Incremental reductions of technical debt

- Life is better but still room for improvement

It Was Like That When | Got Here

Messy Codebase

Page scripts in docroot (page-based)
Spaghetti include logic (include-oriented)
Few or no classes

Global variables

No unit tests -- QA working overtime

No [ime lo Remedy

» Bugs to fix, right now
* Features to implement, right now

» Making your own life easier?
Not a priority.

* Dig in and try to make do

- How did it get this bad!?
“It was like that when | got here.”

The Great Thing About PHP ...

* ...is that anyone can use it.

* Have an idea! Implement it!
* |t works! Great success!

e ...it““'works.’

The Awful Thing About PHP ...

- :

... iIs that anyone can use it.
The codebase is like a “dancing bear”
Architecture! Maintenance! Testing!?

Move on to the next idea ...

... but you are stuck with it now.

Typical Page Script

see editor for example

Why Is It Like This?

* Original developer probably didn’t know better
* Subsequent developers worked with what was there
* “We can fix it later ...”

 ...until later becomes now.

Technical Debt

- A metaphor referring to the eventual consequences of poor
or evolving software architecture and software development
within a codebase.

* As a change is started on a codebase, there is often the
need to make other coordinated changes at the same time
in other parts of the codebase.

* http://en.wikipedia.org/wiki/Technical debt

http://en.wikipedia.org/wiki/Technical_debt

Paying Off Technical Debt

Paying Off Technical Debt

* A lot like paying off financial debt
- Got the stuff first, but have to pay for it eventually
* Must pay off technical debt not of our own choosing

- Suffer as things are, or suffer through change

Declare Bankruptcy

* Rewrite from scratch!

- Expend effort while not earning
revenue

* Old devs on new project!
New devs on new project!?

* Takes longer than you think

X End UP With different bad Cause it's the only way to be sure.
architecture

Incremental Approach

Pay off smallest debt first
(build inertia and raise spirits)

Small changes across codebase
Build on previous small changes

Improve quality over time

1. Determine objectives

4. Plan the next
iteration

b 2. Identify and
resolve risks

3. Development and Test

Incremental Goals

* Keep the application running
» Consolidate classes for autoloading (PSR-0)
» Convert globals to injected dependencies

- After each change:“spot check”, commit, push, QA

Consolidate Classes For Autoloading

What Is Autoloading!?

// without autoloading, must include file first

include_once "/path/to/classes/Example/Name.php";
$obj = new Example Name();

// with autoloading, gets included automatically
$obj = new Example Name();

PSR-0

» Class name maps directly to file name
- Namespace separators map to directory separators

» Class underscores map to directory separators

- Vendor\Package_Name\Examp le_Name
=> \/endor/Package_Name/Example/Name. php

function autoload($class)

{
ltrim($class, "\\'):

$class

$file :

$NS i

$pos = strripos($class, '\\')

1f ($pos) {
$Nns
$class
$file

substr($class, @0, $pos);

substr($class, $pos + 1);

str_replace('\\', DIRECTORY_SEPARATOR, $ns)
. DIRECTORY SEPARATOR;

¥

$file .= str_replace('_ ', DIRECTORY_SEPARATOR, $class);

$base = "/path/to/classes';
require "{$base}/{$file}.php";
}

spl_autoload_register('autoload');

Move Class Files

* If you have class files in several paths, move to same base path
» If you have more than one class per file, split into separate files
» If you define classes as part of a script, extract to own file

* Remove include/require as you go (grep)

» If needed, change names as you go (grep)

Convert Function Files To Class Files

- Many projects have files of function definitions
* Wrap in a class as static or instance methods
- Move to classes directory

» Change calls to static or instance calls (grep)

* Remove include/require as you go (grep)

Original Function

function fetch results()

{
global $db;
$results = $db=>fetch('whatever');
return $results,;

}

¢results = fetch results():

Static Method

class Example

1
public static function fetchResults()
1
global $db;
Sresults = $db=>fetch('whatever'):
return $results:
s
s

$results = . : fetchResults();

Instance Method

class Example

{
public function fetchResults()
{
global $db;
¢results = $db->fetch('whatever'):
return $results:
}
}
$examp le = new ’
$results = $example->fetchResults();

Convert Globals to Injected Dependencies

Instantiating Dependencies In Methods

class Example

{
public function fetchResults()
{
$db = new ('username', 'password'):;
return $db->fetch('whatever'):
}

Drawbacks Of Method Instantiation

* New connection on each call
» Cannot reuse connection

* Parameter modification

Global Dependencies

// setup file
¢db = new ('username', 'password');

// example class file
class Example

{
public function fetchResults()
{
global $db;
return $db=->fetch('whatever'):
}

Global Drawbacks

class Evil

{
public function actionAtADistance()
{
global $db;
unset($db);
}

Dependency Injection

* Instead of reaching out from inside the
class to bring in dependencies ...

* ...Inject the dependency into the class
from the outside.

Starting Point: Global In Method

class Example

{
public function fetchResults()

1
global $db;
return $db->fetch('results'):

Interim: Global In Constructor

class Example

{
public function _ construct()
{
global $db;
$this=>db = $db;
¥
public function fetchResults()
{
return $this=->db->fetch('results"');
}

Final: Dependency Injection

class Example

{ public function _ construct($db)
{ $this—>db = $db;
}
public function fetchResults()
i return $this->db->fetch('results');

Change Instantiation Calls

* Must change all new instantiations to pass dependencies (grep)

- Class instantiation inside methods? Pass intermediary dependencies.

Intermediary Dependency

class Example

{
public function fetchResults()
{
global $db;
return $db->fetch('whatever');
}
}
class Service
{
public function action()
{
$example = new
return $examp1e—>fetchResults()
}

class Example

: public function _ construct($db)
{ $this->db = $db;
;ublic function fetchResults()
{ return $this->db->fetch('whatever');
: }
class Service
{ public function _ construct($db)
: $this->db = $db;
;ublic function action()
{ $example = new Example($this->db);
\ return $example->fetchResults();

Eliminate Intermediary Dependency

class Service

: public function _ construct($example)
: $this—>example = $example;
}
public function action()
i return $this->example->fetchResults();

Progression of Instantiation

// all globals
$¢service = new Service:

// 1ntermediary: Example uses DI,

// but Service creates Example internally
$db = new Database('username', 'password');
$service = new Service($db);

// all DI all the time

$db = new Database('username', 'password');
$example = new Example($db);

$service = new Service($example);

Life After Reorganizing

Initial Goals Completed ...

- Consolidated into classes with PSR-0 and autoloading
- Removed globals in favor of dependency injection

* Kept it running the whole time

» Paid off some technical debt

 Organizational structure for future work

- Start writing unit tests

WE ALL TEST DOWN

)

_t

ng's "

(wrth apologies to Stephen K

... But Much Remains

- Using New keyword - Embedded action logic
* Embedded SQL statements - Embedded include calls
- Embedded domain logic Router + front controller

- Embedded presentation logic * DI container

leanpub.com/mlaphp

Autoloaded,
Dependency Injected,
Unit lested,
Layer Separated,
Front Controlled

Modernizing Legacy
Applications in PHP

Paul M. Jones

https://leanpub.com/mlaphp

